Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Structure and expression analysis of seven salt-related ERF genes of Populus.

Identifieur interne : 000104 ( Main/Exploration ); précédent : 000103; suivant : 000105

Structure and expression analysis of seven salt-related ERF genes of Populus.

Auteurs : Juanjuan Huang [République populaire de Chine] ; Shengji Wang [République populaire de Chine] ; Xingdou Wang [République populaire de Chine] ; Yan Fan [République populaire de Chine] ; Youzhi Han [République populaire de Chine]

Source :

RBID : pubmed:33150090

Abstract

Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven ERF genes related to abiotic stress tolerance and response were identified in plants of the Populus genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven ERF genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven ERF genes showed that they have multiple stress-related motifs and cis-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these ERFs determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven ERFs, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in Populus abiotic stress tolerance and development process.

DOI: 10.7717/peerj.10206
PubMed: 33150090
PubMed Central: PMC7583627


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Structure and expression analysis of seven salt-related
<i>ERF</i>
genes of
<i>Populus</i>
.</title>
<author>
<name sortKey="Huang, Juanjuan" sort="Huang, Juanjuan" uniqKey="Huang J" first="Juanjuan" last="Huang">Juanjuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shengji" sort="Wang, Shengji" uniqKey="Wang S" first="Shengji" last="Wang">Shengji Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xingdou" sort="Wang, Xingdou" uniqKey="Wang X" first="Xingdou" last="Wang">Xingdou Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Yan" sort="Fan, Yan" uniqKey="Fan Y" first="Yan" last="Fan">Yan Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Youzhi" sort="Han, Youzhi" uniqKey="Han Y" first="Youzhi" last="Han">Youzhi Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:33150090</idno>
<idno type="pmid">33150090</idno>
<idno type="doi">10.7717/peerj.10206</idno>
<idno type="pmc">PMC7583627</idno>
<idno type="wicri:Area/Main/Corpus">000025</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000025</idno>
<idno type="wicri:Area/Main/Curation">000025</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000025</idno>
<idno type="wicri:Area/Main/Exploration">000025</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Structure and expression analysis of seven salt-related
<i>ERF</i>
genes of
<i>Populus</i>
.</title>
<author>
<name sortKey="Huang, Juanjuan" sort="Huang, Juanjuan" uniqKey="Huang J" first="Juanjuan" last="Huang">Juanjuan Huang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Shengji" sort="Wang, Shengji" uniqKey="Wang S" first="Shengji" last="Wang">Shengji Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Xingdou" sort="Wang, Xingdou" uniqKey="Wang X" first="Xingdou" last="Wang">Xingdou Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Yan" sort="Fan, Yan" uniqKey="Fan Y" first="Yan" last="Fan">Yan Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Han, Youzhi" sort="Han, Youzhi" uniqKey="Han Y" first="Youzhi" last="Han">Youzhi Han</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Shanxi Agricultural University, Taigu</wicri:regionArea>
<wicri:noRegion>Taigu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven
<i>ERF</i>
genes related to abiotic stress tolerance and response were identified in plants of the
<i>Populus</i>
genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven
<i>ERF</i>
genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven
<i>ERF</i>
genes showed that they have multiple stress-related motifs and
<i>cis</i>
-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these
<i>ERFs</i>
determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven
<i>ERFs</i>
, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in
<i>Populus</i>
abiotic stress tolerance and development process.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">33150090</PMID>
<DateRevised>
<Year>2020</Year>
<Month>11</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>8</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Structure and expression analysis of seven salt-related
<i>ERF</i>
genes of
<i>Populus</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>e10206</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.10206</ELocationID>
<Abstract>
<AbstractText>Ethylene response factors (ERFs) are plant-specific transcription factors (TFs) that play important roles in plant growth and stress defense and have received a great amount of attention in recent years. In this study, seven
<i>ERF</i>
genes related to abiotic stress tolerance and response were identified in plants of the
<i>Populus</i>
genus. Systematic bioinformatics, including sequence phylogeny, genome organisation, gene structure, gene ontology (GO) annotation, etc. were detected. Expression-pattern of these seven
<i>ERF</i>
genes were analyzed using RT-qPCR and cross validated using RNA-Seq. Data from a phylogenetic tree and multiple alignment of protein sequences indicated that these seven ERF TFs belong to three subfamilies and contain AP2, YRG, and RAYD conserved domains, which may interact with downstream target genes to regulate the plant stress response. An analysis of the structure and promoter region of these seven
<i>ERF</i>
genes showed that they have multiple stress-related motifs and
<i>cis</i>
-elements, which may play roles in the plant stress-tolerance process through a transcriptional regulation mechanism; moreover, the cellular_component and molecular_function terms associated with these
<i>ERFs</i>
determined by GO annotation supported this hypothesis. In addition, the spatio-temporal expression pattern of these seven
<i>ERFs</i>
, as detected using RT-qPCR and RNA-seq, suggested that they play a critical role in mediating the salt response and tolerance in a dynamic and tissue-specific manner. The results of this study provide a solid basis to explore the functions of the stress-related ERF TFs in
<i>Populus</i>
abiotic stress tolerance and development process.</AbstractText>
<CopyrightInformation>©2020 Huang et al.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Huang</LastName>
<ForeName>Juanjuan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Wang</LastName>
<ForeName>Shengji</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Xingdou</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Youzhi</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Shanxi Agricultural University, Taigu, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>10</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N"> Gene express</Keyword>
<Keyword MajorTopicYN="N"> Salt stress</Keyword>
<Keyword MajorTopicYN="N">ERF</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">Transcription factor</Keyword>
</KeywordList>
<CoiStatement>The authors declare there are no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>07</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>11</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>8</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">33150090</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.10206</ArticleId>
<ArticleId IdType="pii">10206</ArticleId>
<ArticleId IdType="pmc">PMC7583627</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell. 2000 Jun;12(6):963-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10852940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):896-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26941290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Jul;150(3):1368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Sep;27(9):2469-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26307379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2019 Mar;31(3):663-686</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30538157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 May;156(1):202-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21398256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Feb 1;366(2):256-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16388920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(13):3781-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19602544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ScientificWorldJournal. 2014 Mar 04;2014:745091</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24737991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Mar;14(3):559-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11910004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2018 Jun 1;35(6):1547-1549</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29722887</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Nov 04;10:1375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31749818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Oct 6;167(2):313-324</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27716505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2002 Jan 25;290(3):998-1009</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11798174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2014 Oct;33(10):1687-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24969399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Aug;238(2):271-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23645259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plants (Basel). 2019 Jan 30;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30704089</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2265-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15319480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2015 Nov;252(6):1461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25687296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):241-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20135196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2017 Jan 1;68(3):673-685</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28204526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Mol Biol. 2010 Aug 11;11:57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20701777</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2019 Jul 30;707:189-197</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31029602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007 Nov 06;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2016 Jul 1;198:23-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27123829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Feb 20;8:181</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28265277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Nov 4;354(6312):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27811239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Dec;21(12):3749-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Dec 15;25(24):4876-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9396791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2020 May;63(5):635-674</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32246404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D1040-D1045</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27924042</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442469</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Huang, Juanjuan" sort="Huang, Juanjuan" uniqKey="Huang J" first="Juanjuan" last="Huang">Juanjuan Huang</name>
</noRegion>
<name sortKey="Fan, Yan" sort="Fan, Yan" uniqKey="Fan Y" first="Yan" last="Fan">Yan Fan</name>
<name sortKey="Han, Youzhi" sort="Han, Youzhi" uniqKey="Han Y" first="Youzhi" last="Han">Youzhi Han</name>
<name sortKey="Wang, Shengji" sort="Wang, Shengji" uniqKey="Wang S" first="Shengji" last="Wang">Shengji Wang</name>
<name sortKey="Wang, Xingdou" sort="Wang, Xingdou" uniqKey="Wang X" first="Xingdou" last="Wang">Xingdou Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000104 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000104 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:33150090
   |texte=   Structure and expression analysis of seven salt-related ERF genes of Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:33150090" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020